A Direct-Construction Based Fuzzy Support Vector Classifier

نویسنده

  • Yong Zhang
چکیده

Abstract: This study presents a novel direct-construction based fuzzy multiclass support vector classifier based on previous multi-class classification method by Crammer and Singer (2001). In our proposed method, the membership degree is computed by fuzzy c-means clustering, the optimal problem and its constraints of multiclass classification are reconstructed and its corresponding Lagrangian formula is re-deduced. Experimental comparison with the previous study indicates that our method can obtain better classification ratio.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

A Combination-of-Tools Method for Learning Interpretable Fuzzy Rule-Based Classifiers from Support Vector Machines

A new approach is proposed for the data-based identification of transparent fuzzy rule-based classifiers. It is observed that fuzzy rule-based classifiers work in a similar manner as kernel function-based support vector machines (SVMs) since both model the input space by nonlinearly maps into a feature space where the decision can be easily made. Accordingly, trained SVM can be used for the con...

متن کامل

Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran

Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...

متن کامل

A Rough Set Based Fuzzy Inference System for Mining Temporal Medical Databases

The main objective of this research work is to construct a Fuzzy Temporal Rule Based Classifier that uses fuzzy rough set and temporal logic in order to mine temporal patterns in medical databases. The lower approximation concepts and fuzzy decision table with the fuzzy features are used to obtain fuzzy decision classes for building the classifier. The goals are pre-processing for feature selec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012